Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
2.
Clinics (Sao Paulo) ; 77: 100068, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1894879

RESUMEN

OBJECTIVES: The aim of the present study was to evaluate if neutralizing antibody responses induced by infection with the SARS-CoV-2 strain that was dominant at the beginning of the pandemic or by the Gamma variant was effective against the Omicron variant. METHODS: Convalescent sera from 109 individuals, never exposed to a SARS-CoV-2 vaccine, who had mild or moderate symptoms not requiring hospitalization following either a documented SARS-CoV-2 ancestral strain infection or a Gamma variant infection, were assayed for in vitro neutralizing antibody activity against their original strains and the Omicron variant. RESULTS: Following an infection with the ancestral strain, 56 (93.3%), 45 (77.6%) and 1 (1.7%) serum sample were positive for neutralizing antibodies against the ancestral, Gamma variant, and Omicron variant, respectively. After infection with the Gamma variant, 43 (87.8%) and 2 (4.1%) sera were positive for neutralizing antibodies against the Gamma and Omicron variants, respectively. CONCLUSIONS: Neutralizing antibodies generated following mild or moderate infection with the SARS-CoV-2 ancestral strain or the Gamma variant are not protective against the Omicron variant.


Asunto(s)
Anticuerpos Neutralizantes , COVID-19 , Anticuerpos Antivirales , COVID-19/terapia , Vacunas contra la COVID-19 , Humanos , Inmunización Pasiva , Pruebas de Neutralización , SARS-CoV-2 , Sueroterapia para COVID-19
3.
Rev Inst Med Trop Sao Paulo ; 64: e19, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1725113

RESUMEN

Vaccination is a fundamental tool to prevent SARS-CoV-2 infection and to limit the COVID-19 pandemic. The emergence of SARS-CoV-2 variants with multiple mutations has raised serious concerns about the ability of neutralizing antibody responses elicited by prior vaccination to effectively combat these variants. The neutralizing capacity against the Gamma, Delta and Omicron variants of sera from individuals immunized with the CoronaVac vaccine remains incompletely determined. The present study evaluated 41 health care workers at the Faculdade de Medicina of the Universidade de Sao Paulo, in Sao Paulo, Brazil, naive to previous SARS- CoV-2 infection, who were vaccinated with two doses of the CoronaVac SARS-CoV-2 vaccine 28 days apart. Neutralizing antibody levels against the Gamma, Delta, and Omicron variants were measured at 32 and 186 days after the second vaccination. We also measured neutralizing antibodies against Omicron in 34 of these individuals following a subsequent booster immunization with the Pfizer vaccine. Quantification of neutralizing antibodies was performed using the Cytopathic Effect-based Virus Neutralization test. Neutralization antibody activity against the Gamma, Delta and Omicron variants was observed in 78.0%, 65.9% and 58.5% of serum samples, respectively, obtained at a mean of 32 days after the second immunization. This decreased to 17.1%, 24.4% and 2.4% of sera having activity against Delta, Gamma and Omicron, respectively, at 186 days post-vaccination. The median neutralizing antibody titers at 32 days were 1:40, 1:20 and 1:20 against Gamma, Delta and Omicron, respectively, and decreased to an undetectable median level against all variants at the later time. A booster immunization with the Pfizer vaccine elicited neutralizing antibodies against Omicron in 85% of subjects tested 60 days after vaccination. We conclude that two doses of the CoronaVac vaccine results in limited protection of short duration against the Gamma, Delta and Omicron SARS-CoV-2 variants. A booster dose with the Pfizer vaccine induced antibody neutralizing activity against Omicron in most patients which was measurable 60 days after the booster.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Brasil , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Pandemias , Vacunación
4.
Int J Infect Dis ; 104: 320-328, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: covidwho-1065182

RESUMEN

OBJECTIVES: The coronavirus disease 2019 pandemic increased global demand for personal protective equipment (PPE) and resulted in shortages. The study evaluated the re-use of surgical masks and respirators by analysing their performance and safety before and after reprocessing using the following methods: oven, thermal drying, autoclave, and hydrogen peroxide plasma vapour. METHODS: In total, 45 surgical masks and 69 respirators were decontaminated. Visual integrity, air permeability, burst resistance, pressure differential and particulate filtration efficiency of new and decontaminated surgical masks and respirators were evaluated. In addition, 14 used respirators were analysed after work shifts before and after decontamination using reverse transcription polymerase chain reaction (RT-PCR) and viral culturing. Finally, reprocessed respirators were evaluated by users in terms of functionality and comfort. RESULTS: Oven decontamination (75 °C for 45 min) was found to be the simplest decontamination method. Physical and filtration assays indicated that all reprocessing methods were safe after one cycle. Oven decontamination maintained the characteristics of surgical masks and respirators for at least five reprocessing cycles. Viral RNA was detected by RT-PCR in two of the 14 used respirators. Four respirators submitted to viral culture were PCR-negative and culture-negative. Reprocessed respirators used in work shifts were evaluated positively by users, even after three decontamination cycles. CONCLUSION: Oven decontamination is a safe method for reprocessing surgical masks and respirators for at least five cycles, and is feasible in the hospital setting.


Asunto(s)
COVID-19/prevención & control , Descontaminación/métodos , Máscaras/virología , Pandemias , Equipo de Protección Personal/virología , SARS-CoV-2/aislamiento & purificación , Ventiladores Mecánicos/virología , COVID-19/epidemiología , COVID-19/virología , Equipo Reutilizado , Hospitales , Calor , Humanos , Peróxido de Hidrógeno/farmacología , SARS-CoV-2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA